临界乳光

更新时间:2022-08-25 17:27

临界点附近,照射于介质的光束会被介质强烈散射,这现象称为临界乳光

简介

临界点附近,照射于介质的光束会被介质强烈散射,这现象称为临界乳光波兰物理学者马里安·斯茅鲁樵斯基于1908年首先表明,临界乳光的机制为介质密度涨落,他并没有给出相关的方程。两年后,爱因斯坦应用统计力学严格论述介质的分子结构所形成的密度涨落,从而推导出相关的方程,并且用这方程给出另一种计算阿伏伽德罗常数的方法,更有意思的是,这临界乳光的机制可以解释天空呈蓝色的现象。

按照瑞利散射理论,瑞利散射光的辐照度和入射光波长的四次方成反比。应用瑞利散射来解释天空的蓝色现象,波长较短的蓝光比波长较长的红光更易产生瑞利散射。因此,天空的颜色是蓝色的。瑞利散射方程能够准确地描述光束对于气体的瑞利散射行为,但对于液体并不适用。爱因斯坦的临界乳光理论更一般地适用于液体与气体;瑞利散射只是临界乳光问题的一个特别案例。后来,布鲁诺·齐姆分析粒子在气体与液体里的随机性,将瑞利散射理论加以延伸来描述光在液体里的散射行为。

瑞利散射

瑞利散射(Rayleigh scattering),由英国物理学家约翰·斯特拉特,第三代瑞利男爵(John Strutt, 3rd Baron Rayleigh)的名字命名。它是半径比或其他电磁辐射的波长小很多的微小颗粒(例如单个原子或分子)对入射光束的散射。瑞利散射在光通过透明的固体和液体时都会发生,但以气体最为显著。

在大气中,太阳光的瑞利散射会导致弥漫天空辐射,这也是天空为蓝色和太阳偏黄色的原因。

瑞利散射适用于尺寸远小于光波长的微小颗粒,和光学的“软”颗粒(即,其折射率接近1)。当颗粒尺度相似或大于散射光的波长时,通常是由米氏散射理论、离散偶极子近似和其它计算技术来处理。

瑞利散射光的强度和入射光波长λ的四次方成反比:

其中是入射光的光强分布函数。

因此,波长较短的蓝光比波长较长的红光更易产生瑞利散射。

蓝天与夕阳

瑞利散射可以解释天空为什么是蓝色的。白天,太阳在头顶,当太阳光经过大气层时,与空气分子(其半径远小于可见光的波长)发生瑞利散射,因为蓝光比红光波长短,瑞利散射发生得比较激烈,被散射的蓝光布满了整个天空,从而使天空呈现蓝色,但是太阳本身及其周围呈现白色或黄色,是因为此时看到更多的是直射光而不是散射光,所以日光的颜色(白色)基本未改变——波长较长的红黄色光与蓝绿色光(少量被散射了)的混合。 但因为人眼对不同颜色的敏感度不同,以黄绿色敏感度最高,往两边呈钟形分布,因此人眼对蓝色的敏感度远大于紫色,所以即使散射的可见光波长中紫光能量最高,人眼看起来仍是蓝色。 当日落或日出时,太阳几乎在我们视线的正前方,此时太阳光在大气中要走相对很长的路程,所看到的直射光中的蓝光大量都被散射了,只剩下红橙色的光,这就是为什么日落时太阳附近呈现红色,而云也因为反射太阳光而呈现红色,但天空仍然是蓝色的,只能说是非常昏暗的蓝黑色。如果是在月球上,因为没有大气层,天空即使在白天也是黑的。

参见

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}